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ABSTRACT 

3 777O 
In this Report, we derive the free energies appropriate for station- 

ary and rotating superconductors with and without an external applied 
field. A general theorem is deduced that determines the fluxoids of 
a multiply connected superconductor in its equilibrium state. Also 
shown is that an isolated stationary superconductor rotates when made 
superconducting in an external field. This is an effect that has not been 
noticed previously. 

While we derive free energies from the point of view of London 
theory, which is to treat the superelectrons as having a uniform den- 
sity, we show that even from the point of view of the Ginzburg-Landau 
theory, in which this restriction is not imposed, our conclusions are 
essentially unaltered. In the derivation of the free energies, an expres- 
sion for the magnetic enthalpy is required. This expression is obtained 
in a novel way through use of the concept of a “magnetic reservoir.” 
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1. INTRODUCTION 

In Part I, we studied the magnetic field present in the 
bore of a hollow superconducting cylinder when the 
cylinder rotates in a uniform applied field. The field in 
the bore was shown to depend on both the fluxoid asso- 
ciated with the bore and the angular velocity of the 
cylinder. 

connected superconductor in its equilibrium state: Con- 
sider any cut through the superconductor that lowers its 
connectivity by unity (such a cut always either links two 
holes into one or links a hole with the space outside the 
superconductor); in equilibrium, the net current through 
any and all such cuts is zero. 

The fluxoid is determined at the moment the cylinder 

ddUced from a Particular model of the suPerconducting 
transition. In the model, the transition was assumed to 
occur first at nucleation sites from which it then spread 
throughout the cylinder (Ref. 1). I t  was then shown that, 
according to this model, the fluxoid must assume a value 

field. 

Also shown is that an isolated stationary superconduc- 

field. This is an effect that has not been noticed previously. 

In what follows, we proceed by introducing, in succes- 
sion, the free energy of the stationary superconductor in 
zero applied field, its free enegry in an applied field, its 

finally, its free energy when rotating in an applied field. 

becomes superconducting. The value Of the fluxoid was tor rotates when made superconducting in an external 

that the in the bore to be to the free energy when rotating in applied field, and 

We stated that this value of the fluxoid was also the 
value for which the free energy of the cylinder is a mini- 
mum and that this free energy is essentially the energy 
of the magnetic field generated by currents in the cylin- 
der. In this Part, these statements are proved, and expres- 
sions for various free energies of the superconductor are 
presented. The free energies are those appropriate to 
stationary and rotating superconductors with and without 
an applied external field. 

Through use of these expressions, a general theorem 
is deduced that determines the fluxoids of a multiply 

While we derive these energies from the p i n t  of view 
of London theory, which is to treat the superelectrons as 
having a uniform density, we show in Appendix B that 
even from the point of view of the Ginzburg-Landau 
theory (Ref. 2), in which this restriction is not imposed, 
our conclusions are essentially unaltered. 

In the derivation of the free energies, an expression for 
the magnetic enthalpy is required. This expression is 
obtained in Appendix A in a novel way through use of 
the concept of a “magnetic reservoir.” 

II. THE ENERGY OF A STATIONARY SUPERCONDUCTOR IN A ZERO APPLIED FIELD 

The total energy of a superconductor in the absence Po is the superelectron number density, v8 is the velocity 
field of the superelectrons, and B is the magnetic field 
( s u p  stands for superconductor and ext for exterior). The 
velocity field vs can be eliminated in favor of the mag- 
netic field through the Maxwell equation 

of an external field can be written as 

E = Vo +I { + p 0 r n v ;  + - d r  87r + B2 L?+ezt {E} dr SUP 

(1) 

The term U ,  is the energy of the superconductor with 
no supercurrent present, m is the mass of the electron, 

1 
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so that Eq. (1) depends on the magnetic field alone: 

(3) 

This functional, when varied with respect to the field B 
within the superconductor, yields as extrema the solu- 
tions of 

x*V X V X B + B = O  (4) 

in the superconductor. To fix these solutions, we constrain 
them to join continuously at the surface to solutions of 

V X B = O  ( 5 )  

in the holes and in the exterior. In this way London's 
equation, Eq. (4), is obtained quite simply as the equa- 
tion satisfied by the field for which the energy of the 
superconductor is a minimum (compare Ref. 3). That this 
is true can, in fact, be thought of as the justification for 
regarding Eq. (1) as the energy of the superconductor. 

If now B, or equivalently v8, depend on other param- 
eters of the superconductor, then the equilibrium values 
of these parameters are those that make the energy a 
minimum-or, in other words, in equilibrium, the first 
variation of the energy with respect to these parameters 
must vanish and the second variation must be positive. 
In this way, the parameters that determine the equi- 
librium solution become completely specified. 

A. The fluxoid 

We now show how the energy depends on one such 
parameter-the fluxoid. In showing this dependence, we 
also demonstrate that a fluxoid exists only for a multiply 
connected superconductor. 

If we perform the variation on Eq. (l), we obtain 

Now B = V X A, so that 

and as there is no applied field, the last integral van- 
ishes. Since Eq. (2) and Eq. (4) together require that 
V X (mv8 + e/cA) = 0, we see that mv8 + e/cA is 
equal to a gradient which we write as e / c V x ;  iiivreover, 
V2x = 0 in the superconductor, and we fix the gauge by 
requiring that the normal derivative of x ,  a x h ,  vanish 
on the surface. The existence of the fluxoid is connected 
with the existence of x .  

We first show that x vanishes in a simply connected 
superconductor, so that the fluxoid of such a supercon- 
ductor also vanishes. Now, 

[V [ x V X ]  - V ' X ]  dF 
d7 =1, 

= ~ u , V * [ x V x l d ~  

In a simply connected superconductor, this can be writ- 
ten as 

which, of course, vanishes, showing that Vx = 0 in the 
superconductor and, as a consequence, that 

e 
mc V, = - -A  

Then, for a simply connected superconductor in zero 
applied field 6E = 6U,,, and so, in equilibrium the super- 
conductor is devoid of currents and of field. 

B. The Dependence of the Energy on 
the Fluxoid 

Returning now to the arbitrarily connected supercon- 
ductor, we show that a fluxoid exists and show at the 
same time, how it enters into the expression for the 
energy. We can write 6E (if we drop SUO) entirely in 
terms of surface integrals: 

- G * ( B  X V6x)du 
- 

2 
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A more interesting expression for SE is obtained if we 
write vs OSx as V (v,Sx). However, as is well known 
from hydrodynamics (see Kef. 3 and also Refs. 4,5, and 6), 
we must now be careful in applying Gauss’s theorem 
to the integral, as 6x may not be single-valued in a non- 
simply connected domain. * Allowing this, we must render 
the multiply connected domain simply connected by  
means of cuts; once this is done, we can then apply 
Gauss’s theorem in the usual way. The integral (8) now 
becomes 

+ h o l e  surf 

(9) 

epovs nSxda 

the + and - denoting the two different sides of a cut. 
Since no suppercurrent leaves the superconductor, the 
first surface integral vanishes, and we are left with 

“This means that v 6 X  is singular in the “hole.” The simplest 
example is the function tan-’ ( y/x) .  

As is easily shown (Kef. 4), Sx, - Sx- = Sa is a constant 
over the cut, so that 

(11) 
1 SE = 7 ( 1 s ) c u t  6 a c u t  

c u t s  

where J ,  is the supercurrent through the cut. The “period 
a is, of course, the fluxoid* (Kef. 4), and it can be 
obtained as 

where the contour is about a hole. 

In equilibrium, then, the fluxoids a, whose existence 
has just been demonstrated, must be such that 1, vanishes 
through each cut. But this requires that v, and B vanish 
in the superconductor as we now show. In the same way 
as Eq. (11) was derived from (7) ,  from Eq. (1) we can 
derive 

where the external field is assumed to vanish and we have 
dropped U,. Thus, in equilibrium, since ( J n ) c . u t  = 0, E = 0, 
so that v; = 0 and B2 = 0 (Bloch’s theorem). 

“‘As shown by London, the real importance of the fluxoid lies in 
the fact that the fluxoid, once it is fixed in a superconductor, re- 
mains fixed so long as the superconductor remains supercon- 
ducting. 

111. THE STATIONARY SUPERCONDUCTOR IN AN EXTERNAL FIELD 

We now study the equilibrium of a stationary super- 
conductor in a uniform applied field. In such a field, the 
appropriate thermodynamic potential for a system is no 
longer its internal energy but rather its free energy in 
the field; this energy is also called the magnetic enthalpy. 

The variation of the enthalpy can be obtained by adding 
to variations of the internal energy the term 

(SA X B) *$do (12) 

3 
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(see Appendix A). The value of the external field, while 
not appearing explicitly, enters through the boundary 
condition to be imposed on the solution of Maxwell's 
equations at infinity. 

The variation of the enthalpy* becomes 

*The enthalpy can be expressed in terms of surface integrals just 
as the internal energy was expressed in terms of surface integrals. 
In fact, the expression is the same, the reason being that the 
surface integral a t  infinity can be ignored since it is constant in 
any variation. 

IV. THE ROTATING 

We now study the equilibrium of a rotating super- 
conductor in zero applied field; but first, we discuss the 
internal energy of this system. The energy of a rotating 
superconductor is easily obtained from that of a sta- 
tionary superconductor merely by adding to it the kinetic 
energy of the lattice.**** 

The expressions for the energy of the rotating and 
stationary superconductor appear very similar except 
when v8 is written in terms of B, for then 

*We regard the lattice as rigid and use the term not only for the 
actual lattice of the superconductor but for the lattice plus any 
rigid body that is rigidly attached to it, 

**If we wish, we can again express the energy in terms of surface 
integrals. The expression is (8) except for the addition of 

Here ( K E ) z a t t i c e  denotes the kinetic energy of the lattice, which 
is rotating at the angular velocity o. 

4 

= lup [ mpov, * 6v, + - v X B  4-r 6A]& 

and so, 

1 
c c u t s  

= - c ( I d c u t  6@cut (13) 

Again we see that equilibrium demands that the fluxoids 
be such as to make the current through each cut vanish. 
However, this does not imply that the fluxoids vanish as 
it did when no external field was present. 

SUPERCONDUCTOR 

where vl  is the velocity field of the lattice. This difference 
shows up in the London equation. Variation of the energy 
with respect to B now yields a London equation of the 
form 

AT x v x B + B + 7 v x vl = O+ (15) 

However, the energy we have just discussed is not 
the thermodynamic potential relevant for systems that 

?In writing (15), we have assumed that time-independent solu- 
tions of the Maxwell equations exist for the rotating supercon- 
ductor. This is certainly true as long as we assume the frequency 
of rotation w to be low enough to disregard the presence of 
normal electrons; that is to say, we require w << c 2 / ( 4 r u ~ 2 )  
(where u is the normal conductivity). 
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rotate at a constant angular velocity. Processes that take 
place at constant angular velocity are much the same as 
processes that take place at  constant pressure or at con- 
stant field. The appropriate potential for these processes 
is not the energy but the corresponding enthalpy. Sim- 
ilarly, for processes that take place at a constant angular 
velocity, the appropriate potential is again an enthalpy. 

The essential difference between an enthalpy and an 
energy is that an enthalpy includes work done on the 
reservoir, the reservoir being any system that serves to 
keep the appropriate parameter (pressure or field) fixed. 
A reservoir that serves to keep the angular velocity fixed 
is a large flywheel on which the system is rigidly mounted. 

We now apply these ideas to the rotating supercon- 
ductor. If the lattice is deformable, we must regard the 
entire superconductor as our system rather than just 
the superelectrons alone, and so we have to imagine the 
superconductor to be rigidly fastened to a flywheel. 
However, if the lattice is assumed rigid, we can ignore 
the distinction between flywheel and lattice and lump 
them together calling their combination “the lattice.” 
Consequently, we regard the superelectrons alone as our 
system. 

We now derive what amounts to the rotational en- 
thalpy for the system of the superelectrons. The energy 
of the total system-superelectrons, magnetic field, and 
lattice-is written as 

L; 
E + -  

212 

The energy of the electrons and the energy of the field 
are represented by the first term; the second term is the 
kinetic energy of the lattice written in terms of its angular 
momentum Lz and its moment of inertia Iz. Variation of 
(16) yields 

Evidently, this variation of the energy vanishes in equi- 
librium as must the variation of the energy of any 
isolated system in equilibrium. But if the system is iso- 
lated, its total angular momentum is constant, so that in 
(17), we can replace 6Lz by -8Lsup, which is the nega- 
tive of the angular momentum change of the superelec- 
trons. The angular momentum of the superelectrons can 
be written as e, mpor X vdr. (18) 

Since we can write Lz/Iz as o, the fixed angular velocity, 
expression (17), becomes 

6E - mpovl 6vsd.r (19) s 
where we have replaced o X r by vz. The variation of 
the rotational enthalpy is thus 

mpo (vs - V I )  Gv,dr + 6 Lp 
auace 

If we perform the now familiar transformations, we 
obtain 

for the variation of the enthalpy, and we find that, in 
equilibrium, the fluxoids of a rotating superconductor 
are such as to cause the total current through any cut to 
be zero. 

*The enthalpy can be reduced to surface integrals. The enthalpy 
can be written as (8) plus 

5 
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V. THE SUPERCONDUCTOR ROTATING UNIFORMLY IN A UNIFORM APPLIED FIELD 

(22) 
To obtain the thermodynamic potentiai for a supercon- 

ductor rotating at a uniform angular velocity in a uniform 
e 

Y - 
field, we need only add the term 1 / 4 ~  $ez t  B X 6A do 
to the variation of the rotational enthalpy (see Appendix 
A). The result is again 

and once more we see that equilibrium requires that the 
net current through any cut vanish. 

VI. THE ISOLATED SUPERCONDUCTOR IN AN EXTERNAL FIELD 

For an isolated superconductor, the total angular mo- 
mentum-that of superelectrons plus that of the lattice- 
must vanish. Considerations similar to those above indicate 
once more that for the superconductor to be in equi- 
librium, the fluxoids must be such that the total current 
through any cut vanishes. This condition, together with 
the condition that the total angular momentum vanish, 
determines both the fluxoid and the angular velocity 
of the lattice. If the superconductor is simply connected, 

the fluxoid must vanish, and there is no condition on the 
current. The angular velocity is determined only by the 
condition that the total angular momentum vanish. 

In either case, it is plain to see that an isolated super- 
conductor placed in a uniform field should rotate once 
it is made superconducting. This effect would be ex- 
tremely difficult to demonstrate experimentally. 

6 
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VII. DISCUSSION 

The calculations of the enthalpies given above is some- 
what idealized. For example, we have assumed the lattice 
to be rigid. Consequently, we have neglected contribu- 
tions to the energy of terms that couple the strain field to 
other fields that are present-the magnetic, supercurrent, 
and centrifugal fields.” Nevertheless, this assumption is 
convenient since it allows us to convert any one of the 
enthalpies obtained above to the corresponding Gibbs 
free energy by merely adding to the enthalpy the free 
energy that the stationary superconductor has in the 
absence of an applied field. 

In deriving the free energy in this way, however, we 
also have neglected the effect of magnetic field and 
supercurrent on the superconducting condensation energy. 
The spatial variation of field and supercurrent serve to 
make this energy also a quantity with spatial variation, 
so that it is not enough to take the condensation energy 
into account merely by including it as it appears in the 
free energy of the isolated stationary superconductor. 
However, if we limit ourselves to fields and currents that 
never exceed critical values, we need not consider transi- 
tion to the normal state, so that it never becomes crucial 
to consider either the condensation energy or its de- 
pendence on the field and supercurrent as they explicitly 
appear in the free energy. That is not to say that these 
variations of the condensation energy do not contribute 

*Nevertheless, investigation of the coupling of the strain field to 
the fluxoid may lead to interesting results. In fact, application 
of Le Chatelier’s principle would suggest that there is an effect. 
Because supercurrents push against the surface of a supercon- 
ductor, we might expect that when a superconductor (non- 
simply connected, of course) is squeezed and then cooled, 
supercurrents would be generated to oppose the squeeze. 

to the free energy at all, but rather that their effect- 
modification of the critical temperature-is irrelevant as 
long as the superconductor stays superconducting (see 
Appendix B). 

Disregarding possible effects of the strain field, we 
can characterize our main result by saying that in equi- 
librium, the fluxoid is such as to minimize magnetic 
pressure difference between a hole in the superconduc- 
tor and the exterior of the superconductor. For an in- 
finitely long hollow cylinder, the theorem becomes quite 
simple: in equilibrium, the field in the bore is the same 
as the field outside the cylinder. This holds regardless of 
the radial dimensions of the cylinder, but we must as- 
sume that the current density never exceeds its critical 
value; otherwise, the cylinder would go normal and the 
theorem would not apply. 

It should be noted that while the magnetic pressure 
drop across a superconducting wall tends to vanish, the 
pressure drop from an external surface to the interior of 
the superconductor is, of course, quite large. This pres- 
sure drop is maintained by the flow of supercurrent next 
to the external surfaces in a ‘skin” with a thickness of 
the order of a penetration depth. The currents, however, 
are maintained at the expense of their kinetic energy. 
Nevertheless. the theorem proves what the elementary 
calculations for the example of the hollow cylinder show: 
namely, that for configurations in which no current is 
allowed to flow about a hole, the resulting decrease in 
the internal energy of the superconductor is more than 
made up for by the work that must be done on the 
magnetic reservoir to keep the field in the hole different 
from the field outside the superconductor; therefore, 
these configurations are not equilibrium configurations. 

7 
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APPENDIX A 

The Magnetic Enthalpy 

In this Appendix, we derive anew the thermodynamic 
potential that is appropriate for a system subject to a 
uniform applied magnetic field; for such a system, it is 
this potential-the magnetic enthalpy-that is a mini- 
mum when the system is in equilibrium. Our derivation 
of this potentiaI, we feel, has some advantages over the 
usual derivations, not the least of which is a better 
“physical feel” for the quantity usually described as “the 
work done on the field.” 

In the usual derivations, a current flowing in a long 
solenoid serves as the source of the uniform field. An 
immediate objection arises in using such a source because 
the flow of current constitutes an irreversible process, 
while the potential we wish to derive is to apply to 
reversible processes only. To meet this objection, how- 
ever, we need only imagine the resistance in the wire to 
be vanishingly small. 

A stronger objection to the use of a solenoid as source, 
however, is that it puts the derivation of the magnetic 
enthalpy on a different footing from the derivation of 
other enthalpies. To show this difference most clearly, it 
is convenient first to review the orthodox derivation of 
enthalpies. The usual procedure in deriving an enthalpy 
is to couple the system of interest ( S I )  to another system 
called a reservoir, This reservoir serves to keep the quan- 
tity of interest, call it P-which may be the pressure, the 
applied electric field, the angular velocity (see above), 
or as it is here, the applied magnetic field-constant. This 
reservoir is defined as any system characterized by the 
property that any variation of the state of the system 
results in a change in P that is second order in the varia- 
tion. The total system, made up of the system S I  plus the 
reservoir, is considered to be isolated; consequently, the 
equilibrium states of the total system may be determined 
by the thermodynamic principle of minimum energy. 
This principle states that for a state of an isolated system 
to be an equilibrium state, the energy of the system as a 
function of the state of the system must be a minimum. 
The energy of the total system is the sum of the energies 
of S I  and of the reservoir. For the total energy to be a 
minimum, as we require, its variation with respect to the 
variables of S I  must vanish. While the energy of the 
reservoir does not explicitly depend on the variables of 
S I ,  it is made to depend on these variables through con- 
straints. Any change of the energy of the reservoir is the 

work done on it in a virtual process by the system S I .  
This change of energy then comes to depend on changes 
of the state of the system S I ,  through imposed constraints 
that couple the system to the reservoir. The variation of 
the energy of the total system is then expressible solely 
in variations of the variables of the system S I  alone. This 
variation of the total energy so expressed constitutes the 
variation of the enthalpy, and so ultimately defines the 
enthalpy itself. 

Now the important point is that all the variations are 
virtual. That is to say that they are arbitrary variations 
of mathematical variables not connected by any equa- 
tion of motion, variations that need not even be in accord 
with physicaI laws. However, in the derivations of the 
magnetic enthalpy, as they are usually given, it is essen- 
tial that the time dependence of the variation of flux 
through the system must be taken into account. Such a 
variation is not a virtual one. This makes it appear as if 
somehow the general procedure for obtaining enthalpies 
just outlined must be modified for a magnetic system. 
Yet, in the usual derivations, the time dependence of 
the flux variation is vital. The time dependence of the 
flux is responsible for the back emf in the solenoid, and 
consideration of this back emf is certainly essential, 
since it is responsible for the “work done on the field.” It 
is the work that must be done against the back emf to 
keep the current in the solenoid constant. This work, 
however, is not supplied by the system of interest but 
is work to be supplied by an additional system required 
to keep the current constant. In the usual derivations, the 
need for such a system is ignored. In fact, this system is 
the “magnetic reservoir;” but we see that to use a 
solenoid carrying a constant current as the source of the 
field-aside from the other difficulties-ultimately leads 
to a rather elaborate system. 

Here, we bypass all the difficulties associated with 
making a solenoid the source of the applied field by 
introducing a simple magnetic field reservoir. The reser- 
voir is the flux contained in a hollow, infinitely long, 
perfectly conducting cylinder having a large bore. (If 
we wish, we may even think of the cylinder as being a 
superconductor.) Present in the bore is S I  and some amount 
of trapped magnetic flux. In the absence of S I ,  the field 
in the bore is, of course, uniform. When S I  is present, any 
changes in it may cause the lines of force to distort, but 
no change can change the total number of lines trapped 

8 
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in the bore. This, then, is the constraint that couples the 
field to our S I .  

If the bore is large enough, any bending of the lines 
still leaves the field essentially uniform and unchanged 
through most of the bore. Moreover, for such a large 
bore it is also true that any changes in the field lead to 
changes in the kinetic energy of current in the walls of 
the cylinder that are negligible compared to the changes 
in energy of the field itself, so that the currents in the 
walls can be neglected in our considerations.* 

We now calculate the variation of the total energy. 
The energy of the system composed of SI and the field 
in the bore can be written as 

8 1 8  t 

Here, Us,(B,) is the energy of the system in a field that 
is uniform at 00 ,  the field there having the value B,. Any 
variation of the total energy can be written as 

(A-2) 

The integral can be transformed into two surface inte- 
grals, one at the outer surface of the system, the other 

*For a superconductor, the kinetic energy of these currents is 
roughly the same as the energy of the field that has penetrated 
into the wall. For a cylinder with a large bore, either of these 
energies is negligible compared to the energy of the field in the 
bore. 

at the inner surface of the cylinder. We have, in fact, if 
B = V X A ,  

$B*8Bdr = -$ 6 - B  X 8Ad0 
ayst+ bore 

64-31 +$ G-B'XGAdo 
bore- cy1 

As we now show, the last integral must vanish because 
of the constraint that the flux in the bore be constant. At 
the wall, B is uniform and so may be taken out of the 
integral; the integral then becomes proportional to the 
change of flux throughout the bore, which, of course, 
must be zero. 

Thus, we find that the variation of the magnetic en- 
thalpy is given by 

6Us, (B,) - f: (B X 8A)do (A-4) 

where the entropy of the system is to be held constant, as 
is B,, the field at the wall (the applied field). The vector 
potential A at the surface is to be expressed in terms of 
the variables of SI alone. 

The significance of the surface integral is clear; it is 
the work done on the field by the system. This is the work 
that comes about through the compression of the flux lines 
in the bore when flux is made to leave the system SI. 
When flux moves from the bore into SZ, the work is 
counted as negative. 

It is to be noticed that unless SI is an infinite cylinder, 
B at the surface of the system S I  is not equal to B,. In 
general, then, B must be calculated from the magnetostatic 
Maxwell equation, together with the constitutive equa- 
tions of SI. 

9 
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APPENDIX B 

The Fluxoid in the Ginzburg-Landau Theory 

We choose to write the Ginzburg-Landau (Ref. 2) (G-L) 
expression for the free energy of a superconductor as 

By writing the energy in this form, we have done away 
with the effective wave function introduced by G-L to 
describe the electron superfluid. In the form (B-l), the 
G-L energy is seen to be quite similar to the London 
energy (Eq. 1) differing from it only by the term F ( p ) .  

As we show, this difference leaves unchanged the condi- 
tion (Jcut = 0) satisfied by current (JcUt )  passing through 
a cut in a multiply connected superconductor in thermo- 
dynamic equilibrium. 

To examine the consequences of Eq. (B-1), very much 
the same procedure is used as was used to examine the 
consequences of Eq. (1). We again use Eq. (2), but with 
Po now equal to p, and we obtain as Euler equations 

4xc' 
V X [y] + ~ mc' B = 0 (B-2) 

and 

The first of these is again London's first equation 

e 
me v X v,? + - B = 0 

so that we can again write mvs + e/cA = e/cVx and 
are again led to the fluxoid of London theory, 

A $ ( V x * A d A ) = @  (B-5) 
h o l e  

The real difference between London theoiy and G-L 
theory is the second equation (B-3). This equation al- 
lows (under conditions we need not go into here) the 
superelectron density to vanish throughout regions of 
the superconductor (Ref. 7); these regions are called 
vortices. Though such a hole is not a hole in the super- 
conductor, it is nevertheless a hole in the superelectron 
fluid itself, and since either hole constitutes an absence 
of snperfluid, either hole raises the connectivity of the 
superfluid, so that either hole will have a fluxoid* associ- 
ated with it. 

Since London's first equation is still true, we can still 
write 

where E is the appropriatc enthalpy. The only change 
from London theory is that now in making cuts, the 
vortices count as holes. 

:>Since a \.ortex, when introduced into a simply connected super- 
conductor, changes the fluxoid from a zero to a non-zero value, 
we may well ask what happens to the law of conservation of the 
fluxoitl. This apparent contradiction is resol\.ed as soon as we 
remember that conservation of the fluxoid holds only if no part 
of the superconductor gocs normal; in the formation of a vortex 
however, the portion of the superfluid destined to become the 
core of the vortex does go normal, and thus the full theorem is 
not violated. We  should mention that the vortices are most 
likely to be formed at the surface of the superconductor, where 
the current density is largest. Once the Xrortices are formed there, 
the magnetic pressure gradient that exists tends to push them 
into the interior. 

1 0  



JPL TECHNICAL REPORT r 

REFERENCES 

1. Faber, T. E., in Superconductivity by E. A. Lynton, Methuen and Co., Ltd., London, 
1963. 

2. Ginzburg, V. L., “On the Theory of Superconductivity,” Nuovo Cimento, Vol. 2, 
1955, p. 1234. 

3. Cook, E., “The Phenomenological Theory of Superconductors,” Physical Review, 
Vol. 58, 1940, p. 357. 

4. London, F., Superfluids, Vol. 1, John Wiley and Sons, Inc., New York, 1950.* 

5. Temple, G., An lntroduction to Fluid Dynamics, Oxford University Press, Oxford, 
1958. 

6. Milne-Thomson, L. M., Theoretical Hydrodynamics, Third Edition, Macmillan Co., 
New York, 1955. 

7. Abrikosov, A. A., “On the Magnetic Properties of Superconductors of the Second 
Group,” Soviet Physics IETP, Vol. 5, 1957, p. 1 174. 

*This reference was inadvertently omitted from Part I of Techni- 
cal Report No. 32-650. It  should have been cited there as Ref. 2 
in place of the second Hildebrandt reference. 

The author would like to thank Dr. A. H. Hildebrandt for his con- 
stant encouragement, stimulation, and interest in the work presented 
in this Report. 


